dc.contributor.author | Ivaškė, Augusta | |
dc.contributor.author | Gribniak, Viktor | |
dc.contributor.author | Jakubovskis, Ronaldas | |
dc.contributor.author | Urbonavičius, Jaunius | |
dc.date.accessioned | 2023-12-22T07:06:19Z | |
dc.date.available | 2023-12-22T07:06:19Z | |
dc.date.issued | 2023 | |
dc.identifier.other | (crossref_id)153402943 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153649 | |
dc.description.abstract | Cracking is an inevitable feature of concrete, typically leading to corrosion of the embedded steel reinforcement and massive deterioration because of the freezing–thawing cycles. Different means have been proposed to increase the serviceability performance of cracked concrete structures. This case study deals with bacteria encapsulated in cementitious materials to “heal” cracks. Such a biological self-healing system requires preserving the bacteria’s viability in the cement matrix. Many embedded bacterial spores are damaged during concrete curing, drastically reducing efficiency. This study investigates the viability of commonly used non-ureolytic bacterial spores when immobilized in calcium alginate microcapsules within self-healing cementitious composites. Three Bacillus species were used in this study, i.e., B. pseudofirmus, B. cohnii, and B. halodurans. B. pseudofirmus demonstrated the best mineralization activity; a sufficient number of bacterial spores remained viable after the encapsulation. B. pseudofirmus and B. halodurans spores retained the highest viability after incorporating the microcapsules into the cement paste, while B. halodurans spores retained the highest viability in the mortar. Cracks with a width of about 0.13 mm were filled with bacterial calcium carbonate within 14 to 28 days, depending on the type of bacteria. Larger cracks were not healed entirely. B. pseudofirmus had the highest efficiency, with a healing coefficient of 0.497 after 56 days. This study also revealed the essential role of the cement hydration temperature on bacterial viability. Thus, further studies should optimize the content of bacteria and nutrients in the microcapsule structure. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-16 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | CABI (abstracts) | |
dc.relation.isreferencedby | PubMed | |
dc.relation.isreferencedby | GeoRef | |
dc.source.uri | https://www.mdpi.com/2076-2607/11/10/2402 | |
dc.title | Bacterial viability in self-healing concrete: A case study of non-ureolytic bacillus species | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/
4.0/). | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 37 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.department | Statinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures | |
dc.subject.researchfield | T 005 - Chemijos inžinerija / Chemical engineering | |
dc.subject.researchfield | T 008 - Medžiagų inžinerija / Material engineering | |
dc.subject.vgtuprioritizedfields | FM0202 - Ląstelių ir jų biologiškai aktyvių komponentų tyrimai / Investigations on cells and their biologically active components | |
dc.subject.ltspecializations | L105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies | |
dc.subject.en | bacterial self-healing | |
dc.subject.en | cement mortar | |
dc.subject.en | microencapsulation | |
dc.subject.en | calcium alginate | |
dc.subject.en | viability | |
dcterms.sourcetitle | Microorganisms | |
dc.description.issue | iss. 10 | |
dc.description.volume | vol. 11 | |
dc.publisher.name | MDPI AG | |
dc.publisher.city | Basel | |
dc.identifier.doi | 153402943 | |
dc.identifier.doi | 10.3390/microorganisms11102402 | |
dc.identifier.elaba | 178442978 | |