Show simple item record

dc.contributor.authorDemir, Gülay
dc.contributor.authorChatterjee, Prasenjit
dc.contributor.authorPamucar, Dragan
dc.date.accessioned2023-12-22T07:06:22Z
dc.date.available2023-12-22T07:06:22Z
dc.date.issued2023
dc.identifier.issn0957-4174
dc.identifier.other(SCIDIR_EID)1-s2.0-S0957417423021620
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153664
dc.description.abstractIn the present era, the implementation of scientifically grounded Multi-Criteria Decision Making (MCDM) has emerged as a pivotal solution to diverse decision-making challenges across various domains. Although a substantial body of exploratory, conceptual, and experimental studies exists, only 9.457% studies have incorporated sensitivity analyses to assess the robustness of MCDM methods. An exhaustive scientific exploration of sensitivity analysis within the scope of MCDM is thus lacking. This research aims to address this gap through Bibliometric Analysis while examining 1374 articles published between January 2000 and March 2023 from the Scopus database. Using RStudio (Biblioshiny), CiteSpace, and VOSviewer software, the study constructs a visual representation of the most prolific countries, institutions, and authors. Impressively, China takes the lead in article publications, while India excels in international collaboration. “An extended TODIM multi-criteria group decision-making method for green supplier selection in an interval type-2 fuzzy environment,” featured in the Journal of Environmental Management, emerges as the most cited paper with a total citation of 455. The study also identifies the top three most cited journals, namely “Journal of Cleaner Production,” “Expert Systems With Applications,” and “Computers and Industrial Engineering.” “North China Electric Power University” is the leading institute with the highest research outputs. “Pamučar D” is the most cited author, with 2594 citations and 39 articles, followed by “Kahraman C” and “Zavadskas EK. This study sheds light on trends in scientific developments and collaborations, providing a model for the application of sensitivity analysis in MCDM research and highlighting global trends. An understanding of the current state of sensitivity analysis research can assist researchers working in the entire domain of MCDM. Additionally, the visualization provides prescriptive data for future work and applications related to sensitivity analysis.eng
dc.formatPDF
dc.format.extentp. 1-18
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScienceDirect
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0957417423021620
dc.titleSensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references83
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionSivas Cumhuriyet University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionLebanese American University Yuan Ze University University of Belgrade
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.contributor.departmentTvariosios statybos institutas / Institute of Sustainable Construction
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.studydirectionA02 - Taikomoji matematika / Applied mathematics
dc.subject.studydirectionB01 - Informatika / Informatics
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enMulti Criteria Decision Making
dc.subject.enbibliometric analysis
dc.subject.ensensitivity analysis
dc.subject.enbiblioshiny
dc.subject.enVOSviewer
dc.subject.enCiteSpace
dcterms.sourcetitleExpert systems with applications
dc.description.volumevol. 237
dc.publisher.nameElsevier
dc.publisher.cityOxford
dc.identifier.doi1-s2.0-S0957417423021620
dc.identifier.doiS0957-4174(23)02162-0
dc.identifier.doi85172295229
dc.identifier.doi2-s2.0-85172295229
dc.identifier.doi0
dc.identifier.doiS0957417423021620
dc.identifier.doi153296391
dc.identifier.doi001084138900001
dc.identifier.doi10.1016/j.eswa.2023.121660
dc.identifier.elaba178845511


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record