Rodyti trumpą aprašą

dc.contributor.authorKhan, Muhammad Amir
dc.contributor.authorAsad, Bilal
dc.contributor.authorVaimannn, Toomas
dc.contributor.authorKallaste, Ants
dc.contributor.authorPomarnacki, Raimondas
dc.contributor.authorHyunh, Van Khang
dc.date.accessioned2023-12-22T07:07:14Z
dc.date.available2023-12-22T07:07:14Z
dc.date.issued2023
dc.identifier.issn2075-1702
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153802
dc.description.abstractThe reliable operation of power transmission networks depends on the timely detection and localization of faults. Fault classification and localization in electricity transmission networks can be challenging because of the complicated and dynamic nature of the system. In recent years, a variety of machine learning (ML) and deep learning algorithms (DL) have found applications in the enhancement of fault identification and classification within power transmission networks. Yet, the efficacy of these ML architectures is profoundly dependent upon the abundance and quality of the training data. This intellectual explanation introduces an innovative strategy for the classification and pinpointing of faults within power transmission networks. This is achieved through the utilization of variational autoencoders (VAEs) to generate synthetic data, which in turn is harnessed in conjunction with ML algorithms. This approach encompasses the augmentation of the available dataset by infusing it with synthetically generated instances, contributing to a more robust and proficient fault recognition and categorization system. Specifically, we train the VAE on a set of real-world power transmission data and generate synthetic fault data that capture the statistical properties of real-world data. To overcome the difficulty of fault diagnosis methodology in three-phase high voltage transmission networks, a categorical boosting (Cat-Boost) algorithm is proposed in this work. The other standard machine learning algorithms recommended for this study, including Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN), utilizing the customized version of forward feature selection (FFS), were trained using synthetic data generated by a VAE. The results indicate exceptional performance, surpassing current state-of-the-art techniques, in the tasks of fault classification and localization. Notably, our approach achieves a remarkable 99% accuracy in fault classification and an extremely low mean absolute error (MAE) of 0.2 in fault localization. These outcomes represent a notable advancement compared to the most effective existing baseline methods.eng
dc.formatPDF
dc.format.extentp. 1-22
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.source.urihttps://www.mdpi.com/2075-1702/11/10/963
dc.titleImproved fault classification and localization in power transmission networks using VAE-Generated synthetic data and machine learning algorithms
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references44
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionIslamia University of Bahawalpur
dc.contributor.institutionIslamia University of Bahawalpur Tallinn University of Technology
dc.contributor.institutionTallinn University of Technology
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionUniversity of Agder
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionE09 - Elektronikos inžinerija / Electronic engineering
dc.subject.studydirectionE08 - Elektros inžinerija / Electrical engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enelectrical power systems
dc.subject.ensupport vector machines
dc.subject.enrandom forest
dc.subject.enmachine learning
dc.subject.enwavelet transform
dc.subject.entransmission lines fault
dc.subject.enelectrical power quality
dc.subject.enshort circuit
dc.subject.enclassification of faults
dc.subject.enlocalization of faults
dc.subject.endecision trees
dc.subject.enensemble learning
dc.subject.enk-nearest neighbors
dcterms.sourcetitleMachines: Special issue: Machine learning and artificial intelligence in machinery condition monitoring
dc.description.issueiss. 10
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi154009940
dc.identifier.doi001096362300001
dc.identifier.doi10.3390/machines11100963
dc.identifier.elaba179298861


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą