Show simple item record

dc.contributor.authorDapšys, Ignas
dc.contributor.authorČiegis, Raimondas
dc.contributor.authorStarikovičius, Vadimas
dc.date.accessioned2023-12-22T07:07:17Z
dc.date.available2023-12-22T07:07:17Z
dc.date.issued2023
dc.identifier.issn1392-5113
dc.identifier.other(crossref_id)154935691
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153824
dc.description.abstractWe investigate the ill-posedness of the inverse biosensor problem when the biosensor signals are corrupted by noise. To solve the problem, we employ feed-forward and convolutional neural networks. Computational experiments were performed with different levels of additive and multiplicative noises for the batch and flow injection analysis modes of the biosensor. Obtained results show that the largest errors of recovered concentrations are located on the edges of the training domain. We have found that the inverse problem is less ill-posed in the flow injection analysis mode and concentrations can be reliably recovered for higher levels of noise compared to the batch mode. This finding is confirmed by the application of the DIRECT global optimization method to the considered inverse biosensor problem.eng
dc.formatPDF
dc.format.extentp. 1-18
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.titleApplying artificial neural networks to solve the inverse problem of evaluating concentrations in multianalyte mixtures from biosensor signals
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references33
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.vgtuprioritizedfieldsIK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enbiosensor
dc.subject.enartificial neural network
dc.subject.enmathematical modelling
dc.subject.eninverse problem
dc.subject.enill-posed problem
dc.subject.ennoise
dcterms.sourcetitleNonlinear analysis: modelling and control
dc.description.issueiss. 00
dc.description.volumevol. 00
dc.publisher.nameVilnius University Press
dc.publisher.cityVilnius
dc.identifier.doi154935691
dc.identifier.doi10.15388/namc.2024.29.33604
dc.identifier.elaba181893454


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record