dc.contributor.author | Hajjami, Lhoussain El, | |
dc.contributor.author | Mellouli, El Mehdi, | |
dc.contributor.author | Žuraulis, Vidas, | |
dc.contributor.author | Berrada, Mohammed, | |
dc.date.accessioned | 2023-12-22T07:07:19Z | |
dc.date.available | 2023-12-22T07:07:19Z | |
dc.date.issued | 2023. | |
dc.identifier.issn | 0921-8890 | |
dc.identifier.other | (crossref_id)153823220 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153844 | |
dc.description.abstract | This paper intends to harness recent advances in intelligent commands to develop a novel steering control strategy for autonomous ground vehicles (AGVs) maneuvering problems. In this research, the vehicle is embodied by a single track-model (ST) taking into consideration its lateral dynamics. Besides, it is subject to unknown disturbances and uncertainties, associated with the tire/road adhesion coefficient, which are upper bounded by a positive limit. An on-line Radial Basis-function Neural-Networks (RBNN) adaptive mechanism is designed to estimate this upper limit in the sense of Lyapunov. On this basis, a novel robust adaptive neuro-sliding mode steering angle controller (AN-SMC) is introduced. Whilst the effectiveness of the controller is impacted by its parameters, a new neural-network optimization algorithm (NNA) is employed to provide optimal values for these settings. The proposed approach is evaluated through a single lane-change-maneuver planned out by a new methodology. The steering controller revealed a powerful path-tracking via the comparisons carried out in support of the developed strategy. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-16. | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Engineering Index | |
dc.rights | Prieinamas tik institucijos intranete. | |
dc.source.uri | https://www.sciencedirect.com/science/article/pii/S0921889023001963?v=s5 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:179264475/datastreams/MAIN/content | |
dc.title | A novel robust adaptive neuro-sliding mode steering controller for autonomous ground vehicles / | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 77 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Sidi Mohamed Ben Abdellah University | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Transporto inžinerijos fakultetas / Faculty of Transport Engineering | |
dc.subject.researchfield | T 003 - Transporto inžinerija / Transport engineering | |
dc.subject.studydirection | E12 - Transporto inžinerija / Transport engineering | |
dc.subject.vgtuprioritizedfields | TD0101 - Autonominis sausumos ir oro transportas / Autonomous land and air transport | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | autonomous vehicle | |
dc.subject.en | vehicle dynamics | |
dc.subject.en | ADAS systems | |
dc.subject.en | steering control | |
dc.subject.en | robust adaptive | |
dc.subject.en | neuro-sliding mode | |
dc.subject.en | neural-network optimization | |
dcterms.sourcetitle | Robotics and autonomous systems. | |
dc.description.volume | vol. 170 | |
dc.publisher.name | Elsevier B.V. | |
dc.publisher.city | Amsterdam | |
dc.identifier.doi | 153823220 | |
dc.identifier.doi | 1-s2.0-S0921889023001963 | |
dc.identifier.doi | S0921-8890(23)00196-3 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 001102915700001 | |
dc.identifier.doi | 10.1016/j.robot.2023.104557 | |
dc.identifier.elaba | 179264475 | |