Show simple item record

dc.contributor.authorLeonavičius, Romas
dc.date.accessioned2023-09-18T08:58:06Z
dc.date.available2023-09-18T08:58:06Z
dc.date.issued2007
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/109022
dc.description.abstractModern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented. Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one performer.eng
dc.formatPDF
dc.format.extent25 p.
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:2112538/datastreams/MAIN/content
dc.titleMelizmų sintezė dirbtinių neuronų tinklais
dc.title.alternativeMelisma Synthesis Using Artificial Neural Networks
dc.typeDaktaro disertacijos santrauka / Doctoral dissertation summary
dc.type.pubtypeETD_DR_S - Daktaro disertacijos santrauka / Doctoral dissertation abstract
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.enmelisma
dc.subject.engrupetas
dc.subject.enmean opinion score
dc.subject.enforšlagas
dc.subject.entrill
dc.subject.enmordentas
dc.subject.endirbtinių neuronų tinklai
dc.subject.enVNR
dc.subject.enTPK
dc.subject.ensong
dc.subject.ensynthesis
dc.subject.enmelizma
dc.subject.enadalina
dc.subject.envidutinės nuomonės rezultatas
dc.subject.enartificial neural network
dc.subject.engruppett
dc.subject.enlinear prediction coding
dc.subject.enLPC
dc.subject.enDNT
dc.subject.endaugiasluoksnis perceptronas
dc.subject.endaina
dc.subject.enANT
dc.subject.enMOS
dc.subject.enLevenberg-Marquardt
dc.subject.enmultilayer perceptron
dc.subject.enmordent
dc.subject.entiesinės prognozės koeficientai
dc.subject.enfortis
dc.subject.enadaline
dc.subject.ensintezė
dc.subject.entrelė
dc.publisher.nameLithuanian Academic Libraries Network (LABT)
dc.publisher.cityKaunas
dc.identifier.elaba2112538


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record