Show simple item record

dc.contributor.authorKolesau, Aliaksei
dc.contributor.authorŠešok, Dmitrij
dc.date.accessioned2023-09-18T16:08:01Z
dc.date.available2023-09-18T16:08:01Z
dc.date.issued2021
dc.identifier.issn2076-3417
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/111535
dc.description.abstractVoice activation systems are used to find a pre-defined word or phrase in the audio stream. Industry solutions, such as “OK, Google” for Android devices, are trained with millions of samples. In this work, we propose and investigate several ways to train a voice activation system when the in-domain data set is small. We compare self-training exemplar pre-training, fine-tuning a model pre-trained on another domain, joint training on both an out-of-domain high-resource and a target low-resource data set, and unsupervised pre-training. In our experiments, the unsupervised pre-training and the joint-training with a high-resource data set from another domain significantly outperform a strong baseline of fine-tuning a model trained on another data set. We obtain 7–25% relative improvement depending on the model architecture. Additionally, we improve the best test accuracy on the Lithuanian data set from 90.77% to 93.85%.eng
dc.formatPDF
dc.format.extentp. 1-16
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://www.mdpi.com/2076-3417/11/14/6298
dc.titleVoice activation for low-resource languages
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references48
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.envoice activation
dc.subject.enlow-resource languages
dc.subject.enunsupervised learning
dc.subject.enpre-training
dc.subject.enkeyword spotter
dc.subject.enneural network
dc.subject.enResNet
dcterms.sourcetitleApplied sciences
dc.description.issueiss. 14
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000675961100001
dc.identifier.doi10.3390/app11146298
dc.identifier.elaba100087049


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record