• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Voice activation for low-resource languages

Thumbnail
Date
2021
Author
Kolesau, Aliaksei
Šešok, Dmitrij
Metadata
Show full item record
Abstract
Voice activation systems are used to find a pre-defined word or phrase in the audio stream. Industry solutions, such as “OK, Google” for Android devices, are trained with millions of samples. In this work, we propose and investigate several ways to train a voice activation system when the in-domain data set is small. We compare self-training exemplar pre-training, fine-tuning a model pre-trained on another domain, joint training on both an out-of-domain high-resource and a target low-resource data set, and unsupervised pre-training. In our experiments, the unsupervised pre-training and the joint-training with a high-resource data set from another domain significantly outperform a strong baseline of fine-tuning a model trained on another data set. We obtain 7–25% relative improvement depending on the model architecture. Additionally, we improve the best test accuracy on the Lithuanian data set from 90.77% to 93.85%.
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/111535
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister