Analysis of the influence of CO2 concentration on a spark ignition engine fueled with biogas
View/ Open
Date
2021Author
Kriaučiūnas, Donatas
Pukalskas, Saugirdas
Rimkus, Alfredas
Barta, Dalibor
Metadata
Show full item recordAbstract
Biogas is one of the alternative solutions that could reduce the usage of fossil fuels and production of greenhouse gas emissions, as biogas is considered as an alternative fuel with a short carbon cycle. During biogas production, organic matter is decomposed during an anaerobic digestion process. Biogas mainly consists of methane and carbon dioxide, of which the ratio varies depending on the raw material and parameters of the production process. Therefore, engine parameters should be adjusted in relationship with biogas composition. In this research, a spark ignition engine was tested for mixtures of biogas with 0 vol%, 20 vol%, 40 vol% and 50 vol% of CO2. In all experiments, two cases of spark timing (ST) were used; the first one is a constant spark timing (26 crank angle degrees (CAD) before top dead center (BTDC)) and the second one is an advanced spark timing (optimal for biogas mixture). Results show that increasing the CO2 concentration and using constant spark timing increases the mass burned fraction combustion duration by 90%, reduces the in-cylinder pressure and leads to a reduction in the brake thermal efficiency and nitrogen oxides emissions at all measurement points. However, the choice of optimal spark timing increases the brake thermal efficiency as well as hydrocarbon and CO2 emission.