A direct electron transfer formaldehyde dehydrogenase biosensor for the determination of formaldehyde in river water
Data
2021Autorius
Teišerskytė, Viktorija
Urbonavičius, Jaunius
Ratautas, Dalius
Metaduomenys
Rodyti detalų aprašąSantrauka
In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode. To the best of our knowledge, a DET for FDH was achieved for the first time – the oxidation of formaldehyde started at a low electrode potential of −190 mV vs. Ag/AgCl and reached a maximum current density of 1100 nA cm−2 at 200 mV vs. Ag/AgCl. Also, the designed electrode was insensitive to substrate inhibition (in comparison to the free enzyme) and operated in solutions with formaldehyde concentrations up to 10 mM. The electrode was used and characterized as a mediatorless biosensor for the detection of formaldehyde. The biosensor demonstrated a limit of detection (0.05 mM), linear range from 0.25 to 2.0 mM, the sensitivity of 178.9 nA mM cm−2, high stability and selectivity. The biosensor has been successfully tested for the determination of added formaldehyde concentration in river water samples, thus the developed electrode could be applied for a fast, inexpensive and simple measurement of formaldehyde in various media.