• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Office buildings occupancy analysis and prediction associated with the impact of the COVID-19 pandemic

Thumbnail
Date
2022
Author
Motuzienė, Violeta
Bielskus, Jonas
Lapinskienė, Vilūnė
Rynkun, Genrika
Bernatavičienė, Jolita
Metadata
Show full item record
Abstract
Buildings’ occupancy is one of the important factors causing the energy performance and sustainability gap in buildings. Better occupancy prediction decreases this gap both in the design stage and in the use phase of the building. Machine learning-based models proved to be very accurate and fast for occupancy prediction when buildings are exploited under normal conditions. Meanwhile, during the Covid-19 pandemic occupancy of the offices has dramatically changed. The study presents 2 office buildings’ long-term monitoring results for different periods of the pandemic. It aims to analyse actual occupancies during the pandemic and its influence on the ELM (Extreme Learning Machine) based occupancy-forecasting models’ reliability. The results show much lower actual occupancies in the offices than given in standards and methodologies; it is still low even when quarantines are cancelled. Average peak occupancy within the whole measured period is: for Building A – 12–20% and for Building B – 2–23%. The daily occupancy schedules differ for both offices as they belong to different industries. ELM-SA model has shown low accuracies during pandemic periods as a result of lower occupancies – R2 = 0.27–0.56.
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/112100
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister