• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors

Thumbnail
Date
2021
Author
Diržytė, Aistė
Vijaikis, Aivaras
Perminas, Aidas
Rimašiūtė-Knabikienė, Romualda
Žebrauskas, Giedrius
Kaminskis, Lukas
Metadata
Show full item record
Abstract
Educational systems around the world encourage students to engage in programming activities, but programming learning is one of the most challenging learning tasks. Thus, it was significant to explore the factors related to programming learning. This study aimed to identify computer programming e-learners’ personality traits, self-reported cognitive abilities and learning motivating factors in comparison with other e-learners. We applied a learning motivating factors questionnaire, the Big Five Inventory—2, and the SRMCA instruments. The sample consisted of 444 e-learners, including 189 computer programming e-learners, the mean age was 25.19 years. It was found that computer programming e-learners demonstrated significantly lower scores of extraversion, and significantly lower scores of motivating factors of individual attitude and expectation, reward and recognition, and punishment. No significant differences were found in the scores of selfreported cognitive abilities between the groups. In the group of computer programming e-learners, extraversion was a significant predictor of individual attitude and expectation; conscientiousness and extraversion were significant predictors of challenging goals; extraversion and agreeableness were significant predictors of clear direction; open-mindedness was a significant predictor of a diminished motivating factor of punishment; negative emotionality was a significant predictor of social pressure and competition; comprehension-knowledge was a significant predictor of individual attitude and expectation; fluid reasoning and comprehension-knowledge were significant predictors of challenging goals; comprehension-knowledge was a significant predictor of clear direction; and visual processing was a significant predictor of social pressure and competition. The SEM analysis demonstrated that personality traits (namely, extraversion, conscientiousness, and reverted negative emotionality) statistically significantly predict learning motivating factors (namely, individual attitude and expectation, and clear direction), but the impact of self-reported cognitive abilities in the model was negligible in both groups of participants and non-participants of e-learning based computer programming courses; χ2 (34) = 51.992, p = 0.025; CFI = 0.982; TLI = 0.970; NFI = 0.950; RMSEA = 0.051 [0.019–0.078]; SRMR = 0.038. However, as this study applied self-reported measures, we strongly suggest applying neurocognitive methods in future research.
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/112113
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister