• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian processing of data on bursts of pressure vessels

Thumbnail
View/Open
29690-Article Text-104740-1-10-20211216.pdf (4.210Mb)
Date
2021
Author
Vaidogas, Egidijus Rytas
Metadata
Show full item record
Abstract
Two alternative Bayesian approaches are proposed for the prediction of fragmentation of pressure vessels triggered off by accidental explosions (bursts) of these containment structures. It is shown how to carry out this prediction with post-mortem data on fragment numbers counted after past explosion accidents. Results of the prediction are estimates of probabilities of individual fragment numbers. These estimates are expressed by means of Bayesian prior or posterior distributions. It is demonstrated how to elicit the prior distributions from relatively scarce post-mortem data on vessel fragmentations. Specifically, it is suggested to develop priors with two Bayesian models known as compound Poisson-gamma and multinomial-Dirichlet probability distributions. The available data is used to specify non-informative prior for Poisson parameter that is subsequently transformed into priors of individual fragment number probabilities. Alternatively, the data is applied to a specification of Dirichlet concentration parameters. The latter priors directly express epistemic uncertainty in the fragment number probabilities. Example calculations presented in the study demonstrate that the suggested non-informative prior distributions are responsive to updates with scarce data on vessel explosions. It is shown that priors specified with Poisson-gamma and multinomial-Dirichlet models differ tangibly; however, this difference decreases with increasing amount of new data. For the sake of brevity and concreteness, the study was limited to fire induced vessel bursts known as boiling liquid expanding vapour explosions (BLEVEs).
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/112605
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister