Rodyti trumpą aprašą

dc.contributor.authorMeidutė-Kavaliauskienė, Ieva
dc.contributor.authorSütütemiz, Nihal
dc.contributor.authorYıldırım, Figen
dc.contributor.authorGhorbani, Shahryar
dc.contributor.authorČinčikaitė, Renata
dc.date.accessioned2023-09-18T16:17:23Z
dc.date.available2023-09-18T16:17:23Z
dc.date.issued2022
dc.identifier.issn1996-1073
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/112821
dc.description.abstractCross-docking is an excellent way to reduce the space required to store goods, inventory management costs, and customer order delivery time. This paper focuses on cost optimization, scheduling incoming and outgoing trucks, and green supply chains with multiple cross-docking. The three objectives are minimizing total operating costs, truck transportation sequences, and carbon emissions within the supply chain. Since the linear programming model is an integer of zero and one and belongs to NP-hard problems, its solution time increases sharply with increasing dimensions. Therefore, the non-dominated sorting genetic algorithm-II (NSGA-II) and the multi-objective particle swarm optimization (MOPSO) were used to find near-optimal solutions to the problem. Then, these algorithms were compared with criteria such as execution time and distance from the ideal point, and the superior algorithm in each criterion was identified.eng
dc.formatPDF
dc.format.extentp. 1-24
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyRePec
dc.relation.isreferencedbyCABI (abstracts)
dc.relation.isreferencedbyJ-Gate
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:121404273/datastreams/MAIN/content
dc.titleOptimizing multi cross-docking systems with a multi-objective green location routing problem considering carbon emission and energy consumption
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references47
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionUniversity of Sakarya
dc.contributor.institutionIstanbul Commerce University
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.studydirectionL02 - Vadyba / Management studies
dc.subject.vgtuprioritizedfieldsAE0101 - Efektyvus išteklių ir energijos naudojimas / Efficient use of resources and energy
dc.subject.ltspecializationsL102 - Energetika ir tvari aplinka / Energy and a sustainable environment
dc.subject.ennon-dominated sorting genetic algorithm-II (NSGA-II)
dc.subject.enmulti-objective particle swarm optimization (MOPSO)
dc.subject.encross-docking
dcterms.sourcetitleEnergies: Special issue: Challenges and research trends of energy business and management
dc.description.issueiss. 4
dc.description.volumevol. 15
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000824086000001
dc.identifier.doi10.3390/en15041530
dc.identifier.elaba121404273


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą