• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing multi cross-docking systems with a multi-objective green location routing problem considering carbon emission and energy consumption

Thumbnail
View/Open
energies-15-01530-v2 (1).pdf (2.447Mb)
Date
2022
Author
Meidutė-Kavaliauskienė, Ieva
Sütütemiz, Nihal
Yıldırım, Figen
Ghorbani, Shahryar
Činčikaitė, Renata
Metadata
Show full item record
Abstract
Cross-docking is an excellent way to reduce the space required to store goods, inventory management costs, and customer order delivery time. This paper focuses on cost optimization, scheduling incoming and outgoing trucks, and green supply chains with multiple cross-docking. The three objectives are minimizing total operating costs, truck transportation sequences, and carbon emissions within the supply chain. Since the linear programming model is an integer of zero and one and belongs to NP-hard problems, its solution time increases sharply with increasing dimensions. Therefore, the non-dominated sorting genetic algorithm-II (NSGA-II) and the multi-objective particle swarm optimization (MOPSO) were used to find near-optimal solutions to the problem. Then, these algorithms were compared with criteria such as execution time and distance from the ideal point, and the superior algorithm in each criterion was identified.
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/112821
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister