Rodyti trumpą aprašą

dc.contributor.authorŠumanas, Marius
dc.contributor.authorTrečiokaitė, Vaiva
dc.contributor.authorČerškus, Aurimas
dc.contributor.authorDzedzickis, Andrius
dc.contributor.authorBučinskas, Vytautas
dc.contributor.authorMorkvėnaitė-Vilkončienė, Inga
dc.date.accessioned2023-09-18T16:18:08Z
dc.date.available2023-09-18T16:18:08Z
dc.date.issued2022
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/112980
dc.description.abstractWorking in an office environment leads to sedentary behavior. Prolonged sitting increases back pain and soreness, leading to spinal trauma – scoliosis. Therefore, this research aims to create an automatic tool to help identify the main human body characteristics responsible for good body mass distribution. For this purpose, an 8 × 8 pressure sensor matrix with signal acquisition system was built using Velostat. The commercially available composite piezoresistive material was selected as a pressure transducer due to its flexibility, versatility and low price. After system calibration, its functionality was validated by observing the sitting postures of 9 participants. Participant matrix map analysis showed differences in force distribution between sexes and subjects with and without spine trauma. This research will help monitor the office environment and increase workers’ health and productivity.eng
dc.formatPDF
dc.format.extentp. 192-201
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing vol. 1427 2194-5357 2194-5365
dc.source.urihttps://link.springer.com/chapter/10.1007/978-3-031-03502-9_20
dc.titleSitting posture monitoring using Velostat based pressure sensors matrix
dc.typeStraipsnis recenzuotame konferencijos darbų leidinyje / Paper published in peer-reviewed conference publication
dcterms.references11
dc.type.pubtypeP1d - Straipsnis recenzuotame konferencijos darbų leidinyje / Article published in peer-reviewed conference proceedings
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.studydirectionE06 - Mechanikos inžinerija / Mechanical engineering
dc.subject.vgtuprioritizedfieldsMC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ensitting posture
dc.subject.enspinal trauma
dc.subject.ensensors matrix
dc.subject.enVelostat
dc.subject.enmultiplexer
dc.subject.enBMI index
dcterms.sourcetitleAutomation 2022: New solutions and technologies for automation, robotics and measurement techniques
dc.publisher.nameSpringer
dc.publisher.cityCham
dc.identifier.doi10.1007/978-3-031-03502-9_20
dc.identifier.elaba127186891


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą