Show simple item record

dc.contributor.authorChmieliauskas, Darius
dc.contributor.authorPaulikas, Šarūnas
dc.date.accessioned2023-09-18T16:18:20Z
dc.date.available2023-09-18T16:18:20Z
dc.date.issued2022
dc.identifier.other(SCOPUS_ID)85132133168
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113017
dc.description.abstractFor mobile network operators, it is important to know the service used by their clients for multiple reasons such as Quality of Service guarantee, throttling, prioritization of traffic, or differentiated pricing. The first step to achieve this is to recognize what application is used by a customer on this smartdevice connected to mobile network. Classical, port-based, or deep packet inspection methods face difficulties due to widely used encryption. In this study, we investigate the feasibility of application recognition only from the bit-stream shape on mobile communication channel. For this purpose, a convolutional neural network for time-series classification was used on the dataset collected by the authors. Training of the convolutional neural network was performed on download and upload bit-streams using a sample duration of 60, 300 and 600 s.eng
dc.formatPDF
dc.format.extentp. 1-4
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyIEEE Xplore
dc.titleApplication recognition based on bit-stream shape in mobile networks
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references15
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.studydirectionE09 - Elektronikos inžinerija / Electronic engineering
dc.subject.vgtuprioritizedfieldsIK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enmobile network traffic
dc.subject.enapp recognition
dc.subject.entime series classification
dcterms.sourcetitle2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 21 April 2022, Vilnius, Lithuania / organized by: Vilnius Gediminas Technical University
dc.publisher.nameIEEE
dc.publisher.cityPiscataway, NJ
dc.identifier.doi2-s2.0-85132133168
dc.identifier.doi85132133168
dc.identifier.doi0
dc.identifier.doi137608486
dc.identifier.doi000848697000003
dc.identifier.doi10.1109/eStream56157.2022.9781681
dc.identifier.elaba134759393


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record