dc.contributor.author | Chmieliauskas, Darius | |
dc.contributor.author | Paulikas, Šarūnas | |
dc.date.accessioned | 2023-09-18T16:18:20Z | |
dc.date.available | 2023-09-18T16:18:20Z | |
dc.date.issued | 2022 | |
dc.identifier.other | (SCOPUS_ID)85132133168 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/113017 | |
dc.description.abstract | For mobile network operators, it is important to know the service used by their clients for multiple reasons such as Quality of Service guarantee, throttling, prioritization of traffic, or differentiated pricing. The first step to achieve this is to recognize what application is used by a customer on this smartdevice connected to mobile network. Classical, port-based, or deep packet inspection methods face difficulties due to widely used encryption. In this study, we investigate the feasibility of application recognition only from the bit-stream shape on mobile communication channel. For this purpose, a convolutional neural network for time-series classification was used on the dataset collected by the authors. Training of the convolutional neural network was performed on download and upload bit-streams using a sample duration of 60, 300 and 600 s. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-4 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.title | Application recognition based on bit-stream shape in mobile networks | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 15 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.studydirection | E09 - Elektronikos inžinerija / Electronic engineering | |
dc.subject.vgtuprioritizedfields | IK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | mobile network traffic | |
dc.subject.en | app recognition | |
dc.subject.en | time series classification | |
dcterms.sourcetitle | 2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 21 April 2022, Vilnius, Lithuania / organized by: Vilnius Gediminas Technical University | |
dc.publisher.name | IEEE | |
dc.publisher.city | Piscataway, NJ | |
dc.identifier.doi | 2-s2.0-85132133168 | |
dc.identifier.doi | 85132133168 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 137608486 | |
dc.identifier.doi | 000848697000003 | |
dc.identifier.doi | 10.1109/eStream56157.2022.9781681 | |
dc.identifier.elaba | 134759393 | |