• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of energy dissipation in the mixed-state YBa2Cu3O7-δ superconductor with partially deoxygenated structures

Thumbnail
View/Open
20220616_materials-15-04260.pdf (1.488Mb)
Date
2022
Author
Jukna, Artūras
Metadata
Show full item record
Abstract
Energy dissipation from vortex motion, which appears as a resistivity of the mixed-state superconductor, limits the range of type II superconductors in low- and high-power electronics and optoelectronics. The level of dissipation increases with the development of the vortex motion phase from that of the thermally activated flux flow to that of the flux creep and finally to that of the flux flow. The vortex motion regimes depend on the balance between bias current-self-produced Lorentz force, accelerating vortices, and the pinning force, which, together with a magnetic drag force from pinned vortices, tends to stop the vortex motion. The current paper reports on energy dissipation in YBa2Cu3O7-δ (YBCO) devices provided with partially deoxygenated structures mutually interacting by magnetic force with one another. The shape of the structure and the magnetic interaction between the trapped and moving vortices, as well as the magnetic interaction between neighboring structures, can cause the appearance of voltage steps in the device’s current–voltage characteristics observed in temperature range 0.94 ≥ T/Tc ≥ 0.98 (here, Tc = 91.4 K is the temperature of the superconducting transition in the YBCO material). Current findings demonstrate the potential of artificial structures to control vortex motion in a mixed-state YBCO superconductor by means of a temperature, bias current, and a specific configuration of the structure itself and a profile of the oxygen distribution in it.
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/113387
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister