• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local outlier factor use for the network flow anomaly detection

Thumbnail
Date
2015
Author
Paulauskas, Nerijus
Bagdonas, Ąžuolas-Faustas
Metadata
Show full item record
Abstract
Internet users and computer networks constantly suffer from increasing number of cyberattacks. During the process of seeking how to reduce the risk and possible consequences of the attacks, it is very important to identify the attacks at the initial stage of their realization. For this purpose, the anomaly detection systems, a subset of intrusion detection systems, can be applied. The main advantage of anomaly-based systems is the ability to detect unknown attacks. We propose a novel approach to detect the network flow anomalies. The method relies on aggregated network flow metrics and is based on local outlier factor algorithm, which evaluates each event's uniqueness on the basis of distance from the k-nearest neighbours. In our research, 15 different groups of features (a total of 74 features) were suggested to detect anomalous network flows. According to experimental results, the best groups of features were identified with the highest values of precision, recall
Issue date (year)
2015
URI
https://etalpykla.vilniustech.lt/handle/123456789/113552
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister