Show simple item record

dc.contributor.authorGyamfi, Nana Kwame
dc.contributor.authorČeponis, Dainius
dc.contributor.authorGoranin, Nikolaj
dc.date.accessioned2023-09-18T16:25:07Z
dc.date.available2023-09-18T16:25:07Z
dc.date.issued2022
dc.identifier.other(crossref_id)140929311
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113634
dc.description.abstractIt is imperative for Internet-based services to monitor service performance closely and detect anomalies as soon as possible. Despite this, deploying anomaly detectors to a particular service is still an extremely challenging task, requiring that the parameters and thresholds of anomaly detectors be manually and iteratively tuned to deliver the desired behaviour. Hence, we present here a way to detect and classify anomalies using Modified Random Forests (M-RF). We have selected Random Forest since it can prevent intrusions up to a good extent by itself and can automatically improve accuracy on anomaly detection. AWSCTD data are collected in this section. Initial pre-processing is done using a histogram equalization method. GLCM is then used to extract the required features, which is be then passed on to the feature extraction technique. Finally, it is sent to M-RF for effective classification before the inevitable next step. The model is evaluated against other pre-trained models like SVM, KNN, ANN, GAN, and fuzzy logic against accuracy, sensitivity, and specificity measures. In comparison to other state-of-the-art models, our model outperformed them by 98%.eng
dc.formatPDF
dc.format.extentp. 1-8
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyScopus
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9897027
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:141286960/datastreams/MAIN/content
dc.titleAutomated system-level anomaly detection and classification using modified random forest
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references39
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB03 - Programų sistemos / Software engineering
dc.subject.studydirectionB02 - Informacijos sistemos / Information system
dc.subject.vgtuprioritizedfieldsIK0101 - Informacijos ir informacinių technologijų sauga / Information and Information Technologies Security
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enanomaly
dc.subject.enclassification
dc.subject.enmachine learning
dc.subject.enrandom forest
dcterms.sourcetitleProceedings of 2022 1st International Conference on AI in Cybersecurity (ICAIC), 24-26 May 2022, Victoria, TX, USA
dc.publisher.nameIEEE
dc.publisher.cityPiscataway, NJ
dc.identifier.doi140929311
dc.identifier.doi10.1109/ICAIC53980.2022.9897027
dc.identifier.elaba141286960


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record