• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Peculiarities of the phase formation during electroconsolidation of Al2O3-SiO2-ZrO2 powders mixtures

Thumbnail
Date
2022
Author
Krzysiak, Zbigniew
Gevorkyan, Edwin
Nerubatskyi, Volodymyr
Rucki, Miroslaw
Chyshkala, Volodymyr
Caban, Jacek
Mazur, Tomasz
Metadata
Show full item record
Abstract
This paper is devoted to the sintering process of Al2O3–SiO2–ZrO2 ceramics. The studied method was electroconsolidation with directly applied electric current. This method provides substantial improvements to the mechanical properties of the sintered samples compared to the traditional sintering in the air. The research covered elemental and phase analysis of the samples, which revealed phase transition of high-alumina solid solutions into mullite and corundum. Zirconia was represented mainly by tetragonal phase, but monoclinic phase was present, too. Electroconsolidation enabled samples to reach a density of 3.0 g/cm3 at 1300 °C, while the sample prepared by traditional sintering method obtained it only at 1700 °C. For the composite Al2O3—20 wt.% SiO2—10 wt.% ZrO2 fabricated by electroconsolidation, it was demonstrated that fracture toughness was higher by 20–30%, and hardness was higher by 15–20% compared to that of samples sintered traditionally. Similarly, the samples fabricated by electroconsolidation exhibited elastic modulus E higher by 15–20%. The hypothesis was proposed that the difference in mechanical and physical properties could be attributed to the peculiarities of phase formation processes during electroconsolidation.
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/113694
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister