• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accuracy of ground reaction force and muscle activation prediction in a child-adapted musculoskeletal model

Thumbnail
View/Open
sensors-1955397-FC done.pdf (1.966Mb)
Date
2022
Author
Daunoravičienė, Kristina
Žižienė, Jurgita
Metadata
Show full item record
Abstract
(1) Background: Significant advances in digital modelling worldwide have been attributed to the practical application of digital musculoskeletal (MS) models in clinical practice. However, the vast majority of MS models are designed to assess adults’ mobility, and the range suitable for children is very limited. (2) Methods: Seventeen healthy and 4 cerebral palsy (CP) children were recruited for the gait measurements. Surface electromyography (EMG) and ground reaction forces (GRFs) were acquired simultaneously. The MS model of the adult was adapted to the child and simulated in AnyBody. The differences between measured and MS model-estimated GRFs and muscle activations were evaluated using the following methods: the root-mean-square error (RMSE); the Pearson coefficient r; statistical parametric mapping (SPM) analysis; the coincidence of muscle activity. (3) Results: For muscle activity, the RMSE ranged from 10.4% to 35.3%, the mismatch varied between 16.4% and 30.5%, and the coincidence ranged between 50.7% and 68.4%; the obtained strong or very strong correlations between the measured and model-calculated GRFs, with RMSE values in the y and z axes, ranged from 7.1% to 17.5%. (4) Conclusions: Child-adapted MS model calculated muscle activations and GRFs with sufficient accuracy, so it is suitable for practical use in both healthy children and children with limited mobility
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/113770
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister