dc.contributor.author | Maknickienė, Nijolė | |
dc.contributor.author | Maknickas, Algirdas | |
dc.date.accessioned | 2023-09-18T16:26:07Z | |
dc.date.available | 2023-09-18T16:26:07Z | |
dc.date.issued | 2016 | |
dc.identifier.other | (BIS)VGT02-000031326 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/113917 | |
dc.description.abstract | Modern portfolio theory of investment-based financial market forecasting use probability distributions. This investigation used an ensemble of genetic algorithm based recurrent neural networks (RNN), which allows to obtain multi-modal distribution for predictions. Comparison of the two different models—scatted points based prediction and distributions based prediction—opens new opportunities to create profitable investment tool, which was tested in real time demo market. Dependence of forecasting accuracy on the number of Evolino recurrent neural networks ensemble was obtained for five forecasting points ahead. This study allows to optimize the cluster based computational time and resources required for sufficiently accurate prediction. | eng |
dc.format | PDF | |
dc.format.extent | p. 473-485 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.relation.isreferencedby | SpringerLink | |
dc.relation.isreferencedby | Scopus | |
dc.source.uri | http://link.springer.com/chapter/10.1007/978-3-319-23392-5_26 | |
dc.source.uri | https://doi.org/10.1007/978-3-319-23392-5_26 | |
dc.subject | IK01 - Informacinės technologijos, ontologinės ir telematikos sistemos / Information technologies, ontological and telematic systems | |
dc.title | Prediction capabilities of Evolino RNN ensembles | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 28 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | |
dc.subject.researchfield | S 004 - Ekonomika / Economics | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.ltspecializations | L103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society | |
dc.subject.en | Distribution of expected returns | |
dc.subject.en | Ensembles | |
dc.subject.en | Evolino | |
dc.subject.en | Financial markets | |
dc.subject.en | Prediction | |
dc.subject.en | Recurrent neural networks | |
dcterms.sourcetitle | Computational Intelligence : revised and selected papers of the International Joint Conference, IJCCI 2013, Vilamoura, Portugal, September 20-22, 2013 | |
dc.publisher.name | Springer | |
dc.publisher.city | Berlin | |
dc.identifier.doi | 10.1007/978-3-319-23392-5_26 | |
dc.identifier.elaba | 14480530 | |