Rodyti trumpą aprašą

dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorMaknickas, Algirdas
dc.date.accessioned2023-09-18T16:26:07Z
dc.date.available2023-09-18T16:26:07Z
dc.date.issued2016
dc.identifier.other(BIS)VGT02-000031326
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113917
dc.description.abstractModern portfolio theory of investment-based financial market forecasting use probability distributions. This investigation used an ensemble of genetic algorithm based recurrent neural networks (RNN), which allows to obtain multi-modal distribution for predictions. Comparison of the two different models—scatted points based prediction and distributions based prediction—opens new opportunities to create profitable investment tool, which was tested in real time demo market. Dependence of forecasting accuracy on the number of Evolino recurrent neural networks ensemble was obtained for five forecasting points ahead. This study allows to optimize the cluster based computational time and resources required for sufficiently accurate prediction.eng
dc.formatPDF
dc.format.extentp. 473-485
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.relation.isreferencedbySpringerLink
dc.relation.isreferencedbyScopus
dc.source.urihttp://link.springer.com/chapter/10.1007/978-3-319-23392-5_26
dc.source.urihttps://doi.org/10.1007/978-3-319-23392-5_26
dc.subjectIK01 - Informacinės technologijos, ontologinės ir telematikos sistemos / Information technologies, ontological and telematic systems
dc.titlePrediction capabilities of Evolino RNN ensembles
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references28
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineering
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enDistribution of expected returns
dc.subject.enEnsembles
dc.subject.enEvolino
dc.subject.enFinancial markets
dc.subject.enPrediction
dc.subject.enRecurrent neural networks
dcterms.sourcetitleComputational Intelligence : revised and selected papers of the International Joint Conference, IJCCI 2013, Vilamoura, Portugal, September 20-22, 2013
dc.publisher.nameSpringer
dc.publisher.cityBerlin
dc.identifier.doi10.1007/978-3-319-23392-5_26
dc.identifier.elaba14480530


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą