• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new method for adaptive selection of Self-Organizing Map self-training endpoint

Thumbnail
Date
2015
Author
Stašionis, Liudas
Serackis, Artūras
Metadata
Show full item record
Abstract
The paper presents a new method for adaptive selection of Self-Organizing Map (SOM) self-training endpoint. A method is based on the estimation of the newly introduced parameter init and the learning depth parameter. In order to propose an optimal range of values, the influence of the selected learning depth parameter to the performance of SOM was tested experimentally using input data with uniform distribution. Additionally, four endpoint selection approaches were tested in spectrum sensing application where the SOM based detector was used to detect primary user emissions in 25 MHz wide spectrum band. Three alternative SOM self-training endpoint selection methods were tested on the same topology based SOM. In comparison to SOM self-training endpoint selection algorithm, based on the cluster quality estimation, the proposed method required from 2 : 6 % (for the SOM with small number of neurons) to 44 : 6 % (for the SOM with higher number of neurons) less iterations to reach the endpoint and preserve the similar sensitivity of the spectrum sensor based on SOM.
Issue date (year)
2015
URI
https://etalpykla.vilniustech.lt/handle/123456789/114175
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister