dc.contributor.author | Stašionis, Liudas | |
dc.contributor.author | Serackis, Artūras | |
dc.date.accessioned | 2023-09-18T16:27:40Z | |
dc.date.available | 2023-09-18T16:27:40Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 2255-8942 | |
dc.identifier.other | (BIS)VGT02-000031408 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/114175 | |
dc.description.abstract | The paper presents a new method for adaptive selection of Self-Organizing Map (SOM) self-training endpoint. A method is based on the estimation of the newly introduced parameter init and the learning depth parameter. In order to propose an optimal range of values, the influence of the selected learning depth parameter to the performance of SOM was tested experimentally using input data with uniform distribution. Additionally, four endpoint selection approaches were tested in spectrum sensing application where the SOM based detector was used to detect primary user emissions in 25 MHz wide spectrum band. Three alternative SOM self-training endpoint selection methods were tested on the same topology based SOM. In comparison to SOM self-training endpoint selection algorithm, based on the cluster quality estimation, the proposed method required from 2 : 6 % (for the SOM with small number of neurons) to 44 : 6 % (for the SOM with higher number of neurons) less iterations to reach the endpoint and preserve the similar sensitivity of the spectrum sensor based on SOM. | eng |
dc.format.extent | p. 294-306 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Emerging Sources Citation Index (Web of Science) | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | VINITI | |
dc.source.uri | http://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/3_4_6_Serackis.pdf | |
dc.subject | IK04 - Skaitmeninės signalų apdorojimo technologijos / Digital signal processing technologies | |
dc.title | A new method for adaptive selection of Self-Organizing Map self-training endpoint | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 23 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Self-Organizing Map | |
dc.subject.en | SOM self-training | |
dc.subject.en | Adaptive endpoint | |
dc.subject.en | Spectrum sensor | |
dcterms.sourcetitle | Baltic journal of modern computing (BJMC) | |
dc.description.issue | no. 4 | |
dc.description.volume | Vol. 3 | |
dc.publisher.name | University of Latvia | |
dc.publisher.city | Ryga | |
dc.identifier.elaba | 15949884 | |