dc.contributor.author | Maknickas, Algirdas | |
dc.contributor.author | Maknickienė, Nijolė | |
dc.date.accessioned | 2023-09-18T16:28:30Z | |
dc.date.available | 2023-09-18T16:28:30Z | |
dc.date.issued | 2015 | |
dc.identifier.other | (BIS)VGT02-000031198 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/114292 | |
dc.description.abstract | The chaotic and largely unpredictable conditions that prevail in exchange markets are of considerable interest to speculators because of the potential for profit. The creation and development of a support system using artificial intelligence algorithms provides new opportunities for investors in financial markets. Therefore, the authors have developed a support system that processes hist orical data, makes predictions using an ensemble of EVOLINO recurrent neural networks, assesses these predictions using a composition of high-low distributions, selects an orthogonal investment portfolio, and verifies the outcome on the real market. The support system requires multi-core hardware resources to allow for timely data processing using an MPI library-based parallel computation approach. A comparison of daily and weekly predictions reveals that weekly forecasts are less accurate than daily predictions, but are still accurate enough to trade successfully on the currency markets. Information obtained from the support system gives investors an advantage over uninformed market players in making investment decisions. | eng |
dc.format.extent | p. 138-145 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | INSPEC | |
dc.subject | VE01 - Aukštos pridėtinės vertės ekonomika / High value-added economy | |
dc.title | Investment support system using the EVOLINO recurrent neural network ensemble | |
dc.type | Straipsnis konferencijos darbų leidinyje kitoje DB / Paper in conference publication in other DB | |
dcterms.references | 34 | |
dc.type.pubtype | P1c - Straipsnis konferencijos darbų leidinyje kitoje DB / Article in conference proceedings in other DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | |
dc.subject.researchfield | S 004 - Ekonomika / Economics | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Ensembles | |
dc.subject.en | EVOLINO | |
dc.subject.en | Finance | |
dc.subject.en | Forecasting | |
dc.subject.en | Investment port folio | |
dc.subject.en | Orthogonality | |
dcterms.sourcetitle | IJCCI 2015 : proceedings of the 7th International Joint Conference on Computational Intelligence, Lisbon-Portugal, November 12-14, 2015. Vol. 3: NCTA | |
dc.publisher.name | SCITEPRESS – Science and Technology Publications, Lda | |
dc.publisher.city | Setubal | |
dc.identifier.elaba | 15243329 | |