Show simple item record

dc.contributor.authorMaknickas, Algirdas
dc.contributor.authorMaknickienė, Nijolė
dc.date.accessioned2023-09-18T16:28:30Z
dc.date.available2023-09-18T16:28:30Z
dc.date.issued2015
dc.identifier.other(BIS)VGT02-000031198
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/114292
dc.description.abstractThe chaotic and largely unpredictable conditions that prevail in exchange markets are of considerable interest to speculators because of the potential for profit. The creation and development of a support system using artificial intelligence algorithms provides new opportunities for investors in financial markets. Therefore, the authors have developed a support system that processes hist orical data, makes predictions using an ensemble of EVOLINO recurrent neural networks, assesses these predictions using a composition of high-low distributions, selects an orthogonal investment portfolio, and verifies the outcome on the real market. The support system requires multi-core hardware resources to allow for timely data processing using an MPI library-based parallel computation approach. A comparison of daily and weekly predictions reveals that weekly forecasts are less accurate than daily predictions, but are still accurate enough to trade successfully on the currency markets. Information obtained from the support system gives investors an advantage over uninformed market players in making investment decisions.eng
dc.format.extentp. 138-145
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyINSPEC
dc.subjectVE01 - Aukštos pridėtinės vertės ekonomika / High value-added economy
dc.titleInvestment support system using the EVOLINO recurrent neural network ensemble
dc.typeStraipsnis konferencijos darbų leidinyje kitoje DB / Paper in conference publication in other DB
dcterms.references34
dc.type.pubtypeP1c - Straipsnis konferencijos darbų leidinyje kitoje DB / Article in conference proceedings in other DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineering
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enEnsembles
dc.subject.enEVOLINO
dc.subject.enFinance
dc.subject.enForecasting
dc.subject.enInvestment port folio
dc.subject.enOrthogonality
dcterms.sourcetitleIJCCI 2015 : proceedings of the 7th International Joint Conference on Computational Intelligence, Lisbon-Portugal, November 12-14, 2015. Vol. 3: NCTA
dc.publisher.nameSCITEPRESS – Science and Technology Publications, Lda
dc.publisher.citySetubal
dc.identifier.elaba15243329


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record