Rodyti trumpą aprašą

dc.contributor.authorMakulavičius, Mantas
dc.contributor.authorBagdonas, Rokas
dc.contributor.authorLapkauskaitė, Karolina
dc.contributor.authorGargasas, Justinas
dc.contributor.authorDzedzickis, Andrius
dc.date.accessioned2023-09-18T16:35:00Z
dc.date.available2023-09-18T16:35:00Z
dc.date.issued2023
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115199
dc.description.abstractTraffic congestion in urban areas is the main reason for the long traveling time from one place to another. This happens due to the decisions and reaction times of each driver. Reducing the influence of the driver solution on the control of the vehicle, i.e., increasing the autonomy of the vehicle, can minimize waiting times at traffic light-controlled and uncontrolled intersections. By minimizing the waiting time at the crossroad, the overall traffic intensity can be reduced as well. This research focuses on obtaining information from simulations at specific crossroads for further observations and traffic optimizations, e.g., by implementing machine learning methods. In order to represent the impact of different levels of autonomous vehicles on the autonomous mobile flock traffic, the open-source SUMO (Simulation of Urban MObility) software is used to simulate the traffic in a digital twin mode. The obtained simulation results provide information about the average speed of surrounding vehicles and the number of vehicles over a period of time, with different scenarios reflecting the density ratio of various levels of vehicle autonomy.eng
dc.formatPDF
dc.format.extentp. 85-92
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.ispartofseriesLecture Notes in Networks and Systems vol. 630 2367-3370 2367-3389
dc.relation.isreferencedbyScopus
dc.titleAutonomous mobile flock traffic simulation in digital twin mode
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references15
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.studydirectionE06 - Mechanikos inžinerija / Mechanical engineering
dc.subject.vgtuprioritizedfieldsMC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.entraffic simulation
dc.subject.enurban traffic
dc.subject.entraffic monitoring
dc.subject.enSUMO
dcterms.sourcetitleAutomation 2023: Key challenges in automation, robotics and measurement techniques : conference proceedings
dc.publisher.nameSpringer
dc.publisher.cityCham
dc.identifier.doi10.1007/978-3-031-25844-2_8
dc.identifier.elaba155197157


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą