• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-step algorithm for license plate identification using deep neural networks

Thumbnail
Date
2023
Author
Kundrotas, Mantas
Janutėnaitė-Bogdanienė, Jūratė
Šešok, Dmitrij
Metadata
Show full item record
Abstract
License plate identification remains a crucial problem in computer vision, particularly in complex environments where license plates may be confused with road signs, billboards, and other objects. This paper proposes a solution by modifying the standard car–license plate–letter detection approach into a preliminary license plate detection–precise license plate detection of the four corners where the numbers are located–license plate correction–letter identification. This way, the first algorithm identifies all potential license plates and passes them as input parameters to the next algorithm for more precise detection. The main difference between this approach and other algorithms is that it uses a relatively small image compared to the whole vehicle. Thus, a small but robust network is used to find the four corners and perform a perspective transformation. This simplifies the letter recognition task for the next algorithm, as no additional transformations are required. This solution could be useful for research focusing on this specific task. It allows to apply another compact but robust neural network, increasing the overall speed of the system. Publicly available datasets were used for training and validation. The CenterNet object detection algorithm was used as a basis with a modified Hourglass-type network. The size of the network was decreased by 40% and the average accuracy was 96.19%. Speed significantly increased, reaching 2.71 ms and 405 FPS on average.
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/handle/123456789/115689
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister