Rodyti trumpą aprašą

dc.contributor.authorKundrotas, Mantas
dc.contributor.authorJanutėnaitė-Bogdanienė, Jūratė
dc.contributor.authorŠešok, Dmitrij
dc.date.accessioned2023-09-18T16:39:57Z
dc.date.available2023-09-18T16:39:57Z
dc.date.issued2023
dc.identifier.other(crossref_id)147026357
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115689
dc.description.abstractLicense plate identification remains a crucial problem in computer vision, particularly in complex environments where license plates may be confused with road signs, billboards, and other objects. This paper proposes a solution by modifying the standard car–license plate–letter detection approach into a preliminary license plate detection–precise license plate detection of the four corners where the numbers are located–license plate correction–letter identification. This way, the first algorithm identifies all potential license plates and passes them as input parameters to the next algorithm for more precise detection. The main difference between this approach and other algorithms is that it uses a relatively small image compared to the whole vehicle. Thus, a small but robust network is used to find the four corners and perform a perspective transformation. This simplifies the letter recognition task for the next algorithm, as no additional transformations are required. This solution could be useful for research focusing on this specific task. It allows to apply another compact but robust neural network, increasing the overall speed of the system. Publicly available datasets were used for training and validation. The CenterNet object detection algorithm was used as a basis with a modified Hourglass-type network. The size of the network was decreased by 40% and the average accuracy was 96.19%. Speed significantly increased, reaching 2.71 ms and 405 FPS on average.eng
dc.formatPDF
dc.format.extentp. 1-16
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://www.mdpi.com/2076-3417/13/8/4902
dc.titleTwo-step algorithm for license plate identification using deep neural networks
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references33
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.endeep learning
dc.subject.envehicle detection
dc.subject.enconvolutional neural networks
dc.subject.enimage processing
dc.subject.enlicense plate detection and recognition
dcterms.sourcetitleApplied sciences
dc.description.issueiss. 8
dc.description.volumevol. 13
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi147026357
dc.identifier.doi2-s2.0-85156107866
dc.identifier.doi85156107866
dc.identifier.doi1
dc.identifier.doi000977716100001
dc.identifier.doi10.3390/app13084902
dc.identifier.elaba165630764


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą