• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dinaminių lietuvių kalbos gestų atpažinimas

Thumbnail
Date
2023
Author
Karmonas, Arnas
Katkevičius, Andrius
Metadata
Show full item record
Abstract
Rankų gestų kalba yra žmonių, turinčių klausos negalią, pagrindinis įrankis savo mintims bei žinioms perteikti. Retas žmogus, neturintis klausos negalios, supranta gestų kalbą, todėl rankų gestų atpažinimo sistemų kūrimas ir tobulinimas yra aktualus šiuolaikinis uždavinys, leidžiantis padidinti žmonių su negalia bendravimo galimybes. Rankų gestų atpažinimas taip pat leidžia bekontakčiu būdu valdyti įvairius įrenginius. Straipsnyje nagrinėjami gestų atpažinimo metodai ir pasiūlytas algoritmas, leidžiantis atpažinti dinaminius lietuvių kalbos gestus. Tyrimui buvo sukurtas dinaminių gestų duomenų rinkinys, sudarytas iš vaizdo įrašų, kurių kiekvieno trukmė yra 3 sekundės. Iš viso buvo surinkta 1100 vaizdo įrašų. Duomenų rinkinį sudarė 10 klasių. Požymiams išskirti iš vaizdo įrašo kadrų buvo naudojamas pirminio apmokymo „Inception-v3“ konvoliucinis neuronų tinklas. Išskirti požymiai buvo naudojami LSTM tinklui mokyti. Apmokytas tinklas buvo testuotas su patikros bei testavimo duomenimis ir pasiekė 85 % tikslumą.
 
This paper proposes a method for automated Lithuanian hands gestures data collection and for Lithuanian hands gestures classification. The dataset of 1100 samples was collected for 10 different classes of Lithuanian hands gesture. The features of hands gestures were extracted with CNN network. The classification was made with LSTM network. The trained LSTM network classified the Lithuanian hands gestures with 85% accuracy.
 
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/handle/123456789/115945
Collections
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources [8559]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister