• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An intelligent fuzzy MCDM model based on D and Z numbers for paver selection: IMF D-SWARA—Fuzzy ARAS-Z model

Thumbnail
Date
2023
Author
Jovanović, Stanislav
Zavadskas, Edmundas Kazimieras
Stević, Željko
Marinković, Milan
Alrasheedi, Adel F.
Badi, Ibrahim
Metadata
Show full item record
Abstract
One of the most important challenges when building road infrastructure is the selection of appropriate mechanization, on which the efficiency of construction and the life of exploitation depends largely. As construction machinery, pavers occupy a significant place in civil engineering projects, so their selection, depending on a road category, is a very important activity. The objective of this paper is to develop an intelligent Fuzzy MCDM (Multi-Criteria Decision-Making) model, which consists of the integration of D and Z numbers for the selection of construction machinery. The IMF D-SWARA (Improved Fuzzy D Step-Wise Weight Assessment Ratio Analysis) method was used to determine weighting coefficients. A novel Fuzzy ARAS-Z (Additive Ratio Assessment) method has been developed to determine an adequate paver for a lower category of roads (asphalt width up to 5 m), which represents an important contribution and novelty of the paper. A total of 10 alternatives were evaluated based on 16 criteria which were classified into 4 main groups. The results have shown that the alternative A8—SUPER 1300-3 represents a paver with the best characteristics for the considered set of parameters. After that, verification tests were calculated, and they include a comparative analysis with four other MCDM methods based on Z numbers, a change in the normalization procedure, and the impact of changing the size of an initial fuzzy matrix. The tests showed the stability of the developed model with negligible deviations.
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/handle/123456789/115955
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister