• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic algorithm with modified crossover for grillage optimization

Thumbnail
Data
2017
Autorius
Ramanauskas, Mikalojus
Šešok, Dmitrij
Belevičius, Rimantas
Kurilov, Jevgenij
Valentinavičius, Saulius
Metaduomenys
Rodyti detalų aprašą
Santrauka
Modified genetic algorithm with special phenotypes’ selection and crossover operators with default specified rules is proposed in this paper thus refusing the random crossover. The suggested crossover operator enables wide distribution of genes of the best phenotypes over the whole population. During selection and crossover, the best phenotypes of the newest population and additionally the genes of the best individuals of two previous populations are involved. The effectiveness of the modified algorithm is shown numerically on the real-life global optimization problem from civil engineering - the optimal pile placement problem under grillage-type foundations. This problem is a fair indicator for global optimization algorithms since the ideal solutions are known in advance but with unknown magnitudes of design parameters. Comparison of the proposed algorithm with 6 other stochastic optimization algorithms clearly reveals its advantages: at similar accuracy level the algorithm requires less time for tuning of genetic parameters and provides narrower confidence intervals on the results than other algorithms.
Paskelbimo data (metai)
2017
URI
https://etalpykla.vilniustech.lt/handle/123456789/116764
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis