Bifurcations of Fibonacci generating functions
Data
2007Autorius
Özer, Mehmet
Čenys, Antanas
Polatoglu, Yasar
Hacibekiroglou, Gürsel
Akat, Ercument
Valaristos, Antonios
Anagnostopoulos, A. N.
Metaduomenys
Rodyti detalų aprašąSantrauka
In this work the dynamic behaviour of the one-dimensional family of maps Fp,q(x) = 1/(1 − px − qx2) is examined, for specific values of the control parameters p and q. Lyapunov exponents and bifurcation diagrams are numerically calculated. Consequently, a transition from periodic to chaotic regions is observed at values of p and q, where the related maps correspond to Fibonacci generating functions associated with the golden-, the silver- and the bronze mean.
