Rodyti trumpą aprašą

dc.contributor.authorKurilov, Jevgenij
dc.contributor.authorMamčenko, Jelena
dc.contributor.authorKrikun, Irina
dc.date.accessioned2023-09-18T16:53:17Z
dc.date.available2023-09-18T16:53:17Z
dc.date.issued2017
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/117743
dc.description.abstractThe paper aims to analyse application of learning analytics / educational data mining (LA / EDM) to support learning personalisation and optimisation in virtual learning environment Moodle. LA / EDM are known as the measurement, collection, analysis, and reporting of data about learners and their contexts to understand and optimise learning and environments in which it occurs. In the paper, appropriate literature review is performed on LA / EDM methods and techniques that could be applied to personalise students’ learning in Moodle. After that, the authors’ original methodology to personalise learning is presented. First of all, existing Moodle-based learning activities and tools are analysed to be further interlinked with appropriate students’ learning styles. For this purpose, Felder-Silverman learning styles model (FSLSM) is applied in the research. Students’ learning styles according to FSLSM are interlinked with the most suitable Moodle-based learning activities and tools using expert evaluation method. After that, a group of students is analysed in terms of identifying their individual learner profiles according to Soloman-Felder index of learning styles questionnaire. After identifying individual learner profiles, probabilistic suitability indexes are calculated for each analysed student and each Moodle-based learning activity to identify which learning activities or tools are the most suitable for particular student. From theoretical point of view, the higher is probabilistic suitability index the better learning activity or tool fits particular student’s needs. On the other hand, students practically used some learning activities or tools in real learning practice in Moodle before identifying the aforementioned probabilistic suitability indexes. Here we could hypothesise that students preferred to practically use particular Moodle-based learning activities or tools that fit their learning needs mostly. Thus, using appropriate LA / EMD methods and techniques, it would be helpful to analyse what particular learning activities or tools were practically used by these students in Moodle, and to what extent. After that, the data on practical use of Moodle-based learning activities or tools should be compared with students’ probabilistic suitability indexes. In the case of any noticeable discrepancies, students’ profiles and accompanied suitability indexes should be identified more precisely, and students’ personal leaning paths in Moodle should be corrected according to new identified data. In this way, after several iterations, we could noticeably enhance students’ learning quality and effectiveness.eng
dc.formatPDF
dc.format.extentp. 10180-10188
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.ispartofseriesEDULEARN proceedings 2340-1117
dc.relation.isreferencedbyIATED digital library
dc.relation.isreferencedbyConference Proceedings Citation Index - Social Science & Humanities (Web of Science)
dc.source.urihttps://doi.org/10.21125/edulearn.2017.0928
dc.subjectIK01 - Informacinės technologijos, ontologinės ir telematikos sistemos / Information technologies, ontological and telematic systems
dc.titleLearning personalisation in virtual learning environments applying learning analytics
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references33
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas Vilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enlearning analytics
dc.subject.eneducational data mining
dc.subject.enlearning personalisation
dc.subject.envirtual learning environments
dc.subject.enstudents’ learning styles
dcterms.sourcetitleEDULEARN 17: 9th international conference on education and new learning technologies, Barcelona, Spain, 3-5 July, 2017 : conference proceedings
dc.publisher.nameIATED
dc.publisher.cityValencia
dc.identifier.doi000493048105044
dc.identifier.doi10.21125/edulearn.2017.0928
dc.identifier.elaba23157032


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą