• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traffic sign recognition using convolutional neural networks

Thumbnail
Data
2018
Autorius
Miloš, Ervin
Kolesau, Aliaksei
Šešok, Dmitrij
Metaduomenys
Rodyti detalų aprašą
Santrauka
Traffic sign recognition is an important method that improves the safety in the roads, and this system is an additional step to autonomous driving. Nowadays, to solve traffic sign recognition problem, convolutional neural networks (CNN) can be adopted for its high performance well proved for computer vision applications. This paper proposes histogram equalization preprocessing (HOG) and CNN with additional operations – batch normalization, dropout and data augmentation. Several CNN architectures are compared to differentiate how each operation affects the accuracy of CNN model. Experimental results describe the effectiveness of using CNN with proposed operations.
 
Kelio ženklų atpažinimas – vienas iš svarbių būdų pagerinti saugumą keliuose. Ši sistema laikoma papildomu autonominio vairavimo žingsniu. Šiandien kelio ženklų atpažinimo problemai spręsti taikomi konvoliuciniai neuroniniai tinklai (KNN) dėl jų našumo, įrodyto vaizdų atpažinimo programose. Šiame straipsny-je siūlomas vaizdų histogramos išlyginimo apdorojimo metodas ir KNN su papildomomis operacijomis – paketo normalizavimas ir neuronų išjungimas / įjungimas. Yra palyginamos kelios KNN architektūros siekiant ištirti, kokią įtaką kiekviena operacija daro KNN modelio tikslumui. Eksperimentiniai rezultatai apibūdina KNN naudojimo efektyvumą su pasiūlytomis operacijomis.
 
Paskelbimo data (metai)
2018
URI
https://etalpykla.vilniustech.lt/handle/123456789/118425
Kolekcijos
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources [8559]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis