• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An optimization of system for automatic recognition of ischemic stroke areas in computed tomography images

Thumbnail
Date
2007
Author
Grigaitis, Darius
Bartkutė-Norkūnienė, Vaida
Sakalauskas, Leonidas
Metadata
Show full item record
Abstract
The paper considers application of stochastic optimization to system of automatic recognition of ischemic stroke area on computed tomography (CT) images. The algorithm of recognition depends on five inputs that influence the results of automatic detection. The quality of recognition is measured by size of conjunction of ethalone image and the image calculated by the program of automatic detection. The method of Simultaneous Perturbation Stohastic Approximation algorithm with the Metropolis rule has been applied to the optimization of the quality of image recognition. The Monte-Carlo simulation experiment was performed in order to evaluate the properties of developed algorithm.
 
Sprendžiamas stochastin˙es aproksimacijos optimizavimo uždavinys ischeminio insulto sriˇci u automatiniam atpažinimui kompiuterin˙es tomografijos vaizduose. Atpažinimo algoritmas reguliuojamas penkiais i˙ejimo parametrais, kurie tiesiogiai itakoja atpažinimo rezultatus. Atpažinimo kokyb˙e matuojama sankirtos-s ajungos santykiu tarp etalonini u vaizd u ir atpažint u vaizd u. Opimizavimui naudojamas nuoseklios perturbacijos stochastin˙es aproksimacijos algoritmas leidžiantis optimizuoti vaizdo atpažinim a. Atlikti modeliavimo eksperimentai taikant Monte Karlo metod a, siekiant ivertinti sukurto algoritmo savybes.
 
Issue date (year)
2007
URI
https://etalpykla.vilniustech.lt/handle/123456789/119567
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister