dc.contributor.author | Šabanovič, Eldar | |
dc.contributor.author | Stankevičius, Gediminas | |
dc.contributor.author | Matuzevičius, Dalius | |
dc.date.accessioned | 2023-09-18T17:07:12Z | |
dc.date.available | 2023-09-18T17:07:12Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/119864 | |
dc.description.abstract | Feature description is an important step in image registration workflow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-4 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.relation.isreferencedby | Scopus | |
dc.source.uri | https://ieeexplore.ieee.org/document/8592033 | |
dc.title | Deep neural network-based feature descriptor for retinal image registration | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 29 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.contributor.department | Elektroninių sistemų katedra / Department of Electronic Systems | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | artificial neural networks | |
dc.subject.en | machine learning | |
dc.subject.en | feature descriptors, biomedical imaging | |
dc.subject.en | retinal images | |
dc.subject.en | image registration | |
dcterms.sourcetitle | 2018 IEEE. 6th workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), November 8-10, 2018 Vilnius, Lithuania : proceedings / edited by: Dalius Navakauskas, Andrejs Romanovs, Darius Plonis | |
dc.publisher.name | IEEE | |
dc.publisher.city | New York | |
dc.identifier.doi | 2-s2.0-85061479326 | |
dc.identifier.doi | 000458738600003 | |
dc.identifier.doi | 10.1109/AIEEE.2018.8592033 | |
dc.identifier.elaba | 33432527 | |