Show simple item record

dc.contributor.authorŠabanovič, Eldar
dc.contributor.authorStankevičius, Gediminas
dc.contributor.authorMatuzevičius, Dalius
dc.date.accessioned2023-09-18T17:07:12Z
dc.date.available2023-09-18T17:07:12Z
dc.date.issued2018
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/119864
dc.description.abstractFeature description is an important step in image registration workflow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.eng
dc.formatPDF
dc.format.extentp. 1-4
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyScopus
dc.source.urihttps://ieeexplore.ieee.org/document/8592033
dc.titleDeep neural network-based feature descriptor for retinal image registration
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references29
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systems
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0202 - Išmaniosios signalų apdorojimo ir ryšių technologijos / Smart Signal Processing and Telecommunication Technologies
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enartificial neural networks
dc.subject.enmachine learning
dc.subject.enfeature descriptors, biomedical imaging
dc.subject.enretinal images
dc.subject.enimage registration
dcterms.sourcetitle2018 IEEE. 6th workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), November 8-10, 2018 Vilnius, Lithuania : proceedings / edited by: Dalius Navakauskas, Andrejs Romanovs, Darius Plonis
dc.publisher.nameIEEE
dc.publisher.cityNew York
dc.identifier.doi2-s2.0-85061479326
dc.identifier.doi000458738600003
dc.identifier.doi10.1109/AIEEE.2018.8592033
dc.identifier.elaba33432527


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record