Show simple item record

dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorLapinskaitė, Indrė
dc.contributor.authorMaknickas, Algirdas
dc.date.accessioned2023-09-18T17:11:59Z
dc.date.available2023-09-18T17:11:59Z
dc.date.issued2018
dc.identifier.issn1689-765X
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/120468
dc.description.abstractResearch background: Research and measurement of sentiments, and the integration of methods for sentiment analysis in forecasting models or trading strategies for financial markets are gaining increasing attention at present. The theories that claim it is difficult to predict the individual investor’s decision also claim that individual investors cause market instability due to their irrationality. The existing instability increases the need for scientific research. Purpose of the article: This paper is dedicated to establishing a link between the individual investors’ behavior, which is expressed as sentiments, and the market dynamic, and is evaluated in the stock market. This article hypothesizes that the dynamics in the market is unequivocally related to the individual investor’s sentiments, and that this relationship occurs when the sentiments are expressed strongly and are unlimited.eng
dc.formatPDF
dc.format.extentp. 7-27
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyEmerging Sources Citation Index (Web of Science)
dc.relation.isreferencedbyEconLit
dc.relation.isreferencedbyEconBiz
dc.relation.isreferencedbyRePEc: Research Papers in Economics
dc.relation.isreferencedbyCEEOL – Central and Eastern European Online Library
dc.relation.isreferencedbyArianta
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.24136/eq.2018.001
dc.source.urihttp://economic-research.pl/Journals/index.php/eq/article/view/722/687
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:27593488/datastreams/MAIN/content
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:27593488/datastreams/COVER/content
dc.subjectVE01 - Aukštos pridėtinės vertės ekonomika / High value-added economy
dc.titleApplication of ensemble of recurrent neural networks for forecasting of stock market sentiments
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThe journal offers access to the contents in the open access system on the principles of non-exclusive license Creative Commons (CC BY 4.0).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references48
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Science
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enartificial intelligence
dc.subject.enensembles
dc.subject.ensentiments
dc.subject.enstock market
dc.subject.eninvestors’ behavior
dcterms.sourcetitleEquilibrium - quarterly journal of economics and economic policy
dc.description.issueiss. 1
dc.description.volumevol. 13
dc.publisher.nameInstitute of Economic Research
dc.publisher.cityToruń
dc.identifier.doi000431167500001
dc.identifier.doi10.24136/eq.2018.001
dc.identifier.elaba27593488


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record