• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of ensemble of recurrent neural networks for forecasting of stock market sentiments

Thumbnail
View/Open
Maknickiene.pdf (1.031Mb)
Date
2018
Author
Maknickienė, Nijolė
Lapinskaitė, Indrė
Maknickas, Algirdas
Metadata
Show full item record
Abstract
Research background: Research and measurement of sentiments, and the integration of methods for sentiment analysis in forecasting models or trading strategies for financial markets are gaining increasing attention at present. The theories that claim it is difficult to predict the individual investor’s decision also claim that individual investors cause market instability due to their irrationality. The existing instability increases the need for scientific research. Purpose of the article: This paper is dedicated to establishing a link between the individual investors’ behavior, which is expressed as sentiments, and the market dynamic, and is evaluated in the stock market. This article hypothesizes that the dynamics in the market is unequivocally related to the individual investor’s sentiments, and that this relationship occurs when the sentiments are expressed strongly and are unlimited.
Issue date (year)
2018
URI
https://etalpykla.vilniustech.lt/handle/123456789/120468
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister