• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The relaxed Newton method derivative: Its dynamics and non-linear properties

Thumbnail
Date
2008
Author
Özer, Mehmet
Polatoglu, Yasar
Hacibekiroglou, Gürsel
Valaristos, Antonios
Miliou, Amalia N.
Anagnostopoulos, A. N.
Čenys, Antanas
Metadata
Show full item record
Abstract
The dynamic behaviour of the one-dimensional family of maps f(x)=c2[(a−1)x+c1]−λ/(α−1) is examined, for representative values of the control parameters a,c1, c2 and λ. The maps under consideration are of special interest, since they are solutions of the relaxed Newton method derivative being equal to a constant a. The maps f(x) are also proved to be solutions of a non-linear differential equation with outstanding applications in the field of power electronics. The recurrent form of these maps, after excessive iterations, shows, in an xn versus λ plot, an initial exponential decay followed by a bifurcation. The value of λ at which this bifurcation takes place depends on the values of the parameters a,c1 and c2. This corresponds to a switch to an oscillatory behaviour with amplitudes of f(x) undergoing a period doubling. For values of a higher than 1 and at higher values of λ a reverse bifurcation occurs. The corresponding branches converge and a bleb is formed for values of the parameter c1 between 1 and 1.20. This behaviour is confirmed by calculating the corresponding Lyapunov exponents.
Issue date (year)
2008
URI
https://etalpykla.vilniustech.lt/handle/123456789/121199
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister