Show simple item record

dc.contributor.authorTumas, Paulius
dc.contributor.authorJonkus, Artūras
dc.contributor.authorSerackis, Artūras
dc.date.accessioned2023-09-18T17:18:40Z
dc.date.available2023-09-18T17:18:40Z
dc.date.issued2018
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/121809
dc.description.abstractPedestrian detection is one the main problem for the automotive applications which is a challenging task to do. In recent years, the number of approaches was developed to speed up the detection rate and accuracy. However, the general problem of detectors remains. The aim of the paper was to evaluate experimentally current and efficient pedestrian detection methods in night vision applications and propose some modifications to accelerate the image analysis work flow. In this paper, for night vision application we used an FIR domain camera. The novelty of the proposed solution lays in the application of HOG based pedestrian detector for FIR domain camera. An acceleration of the algorithm was achieved using subtraction of the thermally active regions before supplying these regions to the pre-trained feature descriptor. An experimental investigation has shown the significant improvement in pedestrian detection speed using solution, proposed in this paper. Our study shows that state of the art detectors can gain nearly triple initial detection rate using the same image data.eng
dc.formatPDF
dc.format.extentp. 1-4
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.source.urihttps://ieeexplore.ieee.org/document/8394126/
dc.titleAcceleration of HOG based pedestrian detection in FIR camera video stream
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references3
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enFar-infrared
dc.subject.enpedestrian detection
dc.subject.encontour extraction
dc.subject.enHOG
dcterms.sourcetitle2018 Open Conference of Electrical, Electronic and Information Sciences (eStream), 26 April 2018, Vilnius, Lithuania
dc.publisher.nameIEEE
dc.publisher.cityNew York
dc.identifier.doi000437153000011
dc.identifier.doi2-s2.0-85050589301
dc.identifier.doi10.1109/eStream.2018.8394126
dc.identifier.elaba30255963


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record