dc.contributor.author | Tumas, Paulius | |
dc.contributor.author | Jonkus, Artūras | |
dc.contributor.author | Serackis, Artūras | |
dc.date.accessioned | 2023-09-18T17:18:40Z | |
dc.date.available | 2023-09-18T17:18:40Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/121809 | |
dc.description.abstract | Pedestrian detection is one the main problem for the automotive applications which is a challenging task to do. In recent years, the number of approaches was developed to speed up the detection rate and accuracy. However, the general problem of detectors remains. The aim of the paper was to evaluate experimentally current and efficient pedestrian detection methods in night vision applications and propose some modifications to accelerate the image analysis work flow. In this paper, for night vision application we used an FIR domain camera. The novelty of the proposed solution lays in the application of HOG based pedestrian detector for FIR domain camera. An acceleration of the algorithm was achieved using subtraction of the thermally active regions before supplying these regions to the pre-trained feature descriptor. An experimental investigation has shown the significant improvement in pedestrian detection speed using solution, proposed in this paper. Our study shows that state of the art detectors can gain nearly triple initial detection rate using the same image data. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-4 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.source.uri | https://ieeexplore.ieee.org/document/8394126/ | |
dc.title | Acceleration of HOG based pedestrian detection in FIR camera video stream | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 3 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Far-infrared | |
dc.subject.en | pedestrian detection | |
dc.subject.en | contour extraction | |
dc.subject.en | HOG | |
dcterms.sourcetitle | 2018 Open Conference of Electrical, Electronic and Information Sciences (eStream), 26 April 2018, Vilnius, Lithuania | |
dc.publisher.name | IEEE | |
dc.publisher.city | New York | |
dc.identifier.doi | 000437153000011 | |
dc.identifier.doi | 2-s2.0-85050589301 | |
dc.identifier.doi | 10.1109/eStream.2018.8394126 | |
dc.identifier.elaba | 30255963 | |