• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Long-term memory effect in stock prices analysis

Thumbnail
View/Open
eiv_Vol14_151-155_Danilenko.pdf (141.4Kb)
Date
2009
Author
Danilenko, Svetlana
Metadata
Show full item record
Abstract
The Hurst exponen is widely applied for time series analysis. The Hurst exponent is a statistical measure used to classify time series. Using the Hurst parameter processes are classified into long range dependence, antipersistence and white noise processes.R/S analysis method is one of the few methods that evaluate the Hurst exponent. This method uses the rescaled range statistic (R/S statistic). The R/S statistic is the range of partial sums of deviations of a time series from its mean, rescaled by its standard deviation. A log-log plot of the R/S statistic versus the number of points of the aggregated series should be a straight line with the slope being an estimation of the Hurst exponent. However, there are many methods of evaluating the Hurst exponent such as ratio variance of residuals, the periodogram method, the Whittle method, the Abri-Veitch method, etc. Investigation object - the baltic sector indices. Thwe latter represent tendencies of different sector activity in the stock market. The work concentrates on calculating the Hurst parameter, evaluated Hurst parameters of the Baltic sector indices are given for different periods of time.
Issue date (year)
2009
URI
https://etalpykla.vilniustech.lt/handle/123456789/123218
Collections
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources [8559]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister