Rodyti trumpą aprašą

dc.contributor.authorDanilenko, Svetlana
dc.date.accessioned2023-09-18T17:26:57Z
dc.date.available2023-09-18T17:26:57Z
dc.date.issued2009
dc.identifier.issn1822-6515
dc.identifier.other(BIS)VGT02-000018735
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/123218
dc.description.abstractThe Hurst exponen is widely applied for time series analysis. The Hurst exponent is a statistical measure used to classify time series. Using the Hurst parameter processes are classified into long range dependence, antipersistence and white noise processes.R/S analysis method is one of the few methods that evaluate the Hurst exponent. This method uses the rescaled range statistic (R/S statistic). The R/S statistic is the range of partial sums of deviations of a time series from its mean, rescaled by its standard deviation. A log-log plot of the R/S statistic versus the number of points of the aggregated series should be a straight line with the slope being an estimation of the Hurst exponent. However, there are many methods of evaluating the Hurst exponent such as ratio variance of residuals, the periodogram method, the Whittle method, the Abri-Veitch method, etc. Investigation object - the baltic sector indices. Thwe latter represent tendencies of different sector activity in the stock market. The work concentrates on calculating the Hurst parameter, evaluated Hurst parameters of the Baltic sector indices are given for different periods of time.eng
dc.format.extentp. 151-1555
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyBusiness Source Complete
dc.titleLong-term memory effect in stock prices analysis
dc.typeStraipsnis kitoje DB / Article in other DB
dcterms.references14
dc.type.pubtypeS3 - Straipsnis kitoje DB / Article in other DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.enR/S analysis
dc.subject.enHurst exponent
dc.subject.enFinancial markets
dc.subject.enShare index
dcterms.sourcetitleEkonomika ir vadyba = Economics and management
dc.description.issueNr. 14
dc.publisher.cityKauno technologijos universitetas
dc.identifier.elaba3863473


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą