A study on analytical T-stub prying models for RHS joints in tension
Abstract
The article investigates analytical models for calculation of tension capacity of axially-loaded RHS end-plate joints bolted along two and four sides of the tube in order to investigate the phenomena of prying. Design of such joints is impeded by lack of rules in EN 1993-1-8 and it raises the question whether the Eurocode 3 equivalent T-stub in the tension component should contain integrated assumptions from the AISC/CIDECT/CISC design guides. This paper considers the effect of the bolt hole on the length of the plastic hinge and compares different T-stub models with various assumptions. The behaviour and collapse mechanism of joints with non-preloaded and preloaded bolts was tested during an experiment. The statistical analysis of the test results of 47 joints found in the literature in conjunction with 7 tests determined that it was preferable to use a common approach for connections bolted along two and four sides. Additionally, a limitation of a minimum flange thickness is specified. The performed research has disclosed the benefits and shortcomings of the T-stub models and justified recommendations for their improvement.