• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of pulsed electric fields for the elimination of highly drug-resistant Candida grown under modelled microgravity conditions

Thumbnail
Date
2019
Author
Lastauskienė, Eglė
Novickij, Vitalij
Zinkevičienė, Auksė
Girkontaitė, Irutė
Paškevičius, Algimantas
Švedienė, Jurgita
Markovskaja, Svetlana
Novickij, Jurij
Metadata
Show full item record
Abstract
Candida lusitaniae and C. guilliermondii are perfect model organisms for the study of Candida genera behaviour in various conditions. Both of them are rare pathogens capable to cause candidiasis in the patients with weakened immune system and can undergo morphology switches related to the increased antifungal drug resistance. Candida genera yeasts are able to inhabit diverse range of ecological niches including space ships and space stations. During the long-term expeditions, astronauts are affected by various factors that can change the state immune system. In such conditions, the commensal usually non-pathogenic microorganisms can spread through the body of the host and cause infections. Weakened immune system and limited use of drugs in spaceships promote the search of the alternative methods for the biocontrol of microorganisms. Several studies demonstrate that microorganisms are altering their gene expression, physiology, morphology, pathogenicity and evolving resistance to the antifungals under microgravity conditions. Our research indicated that switch to the pseudohyphae morphology leads up 30-fold increased resistance to amphotericin B in C. lusitaniae and C. guilliermondii. Cultivation of yeasts in rotary cell culture system (RCCS) is related to the altered cell growth and resistance to the antifungal treatment. Our results showed that growth in the RCCS led to the extreme increase in cell resistance to amphotericin B as compared with the standard growth conditions. In our research, we applied electroporation for the biocontrol of two Candida species. C. lusitaniae and C. guilliermondii cells grown in RCCS exhibited significantly increased survivability after pulsed electric field (PEF) treatment in comparison with cells grown under routine conditions. We have shown that PEF bursts of 2.5–25 kV cm−1 of 100 μs × 8 duration display a dose-dependent permeabilization of both studied Candida species. Our research indicated that budding cells and pseudohyphae morphology cells, with increased resistance to amphotericin B, can be effectively inactivated after applying PEF higher than 15 kV cm−1.
Issue date (year)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/132593
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister