dc.contributor.author | Morkvėnaitė-Vilkončienė, Inga | |
dc.contributor.author | Vilkončius, Raimundas | |
dc.contributor.author | Rožėnė, Justė | |
dc.contributor.author | Zinovičius, Antanas | |
dc.contributor.author | Balitskyi, Oleksii | |
dc.contributor.author | Ramanavičienė, Almira | |
dc.contributor.author | Ramanavičius, Arūnas | |
dc.contributor.author | Dzedzickis, Andrius | |
dc.contributor.author | Bučinskas, Vytautas | |
dc.date.accessioned | 2023-09-18T18:58:28Z | |
dc.date.available | 2023-09-18T18:58:28Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/133918 | |
dc.description.abstract | Living cells mechanical properties establishment from Atomic force microscopy (AFM) force-separation curves is a challenge because the calculated Young’s modulus depends on the applied mathematical model. The more reliable results can be obtained using finite element models. In this work, Yeasts cells with different mechanical properties were measured by AFM. To change cells mechanical properties, yeasts were immersed in 9,10-phenanthrenequinone, which changed cells’ membranes elasticity. 3D finite element model of the whole cell was created to calculate reacting force when AFM tip indents the cell in the same way as in the real experiment. It was found that our model is capable to draw the information about cells mechanical properties and visco-elastic behavior of cells membranes. | eng |
dc.format | PDF | |
dc.format.extent | p. 657-663 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Advances in intelligent systems and computing vol. 920 2194-5357 2194-5365 | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | SpringerLink | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.source.uri | https://doi.org/10.1007/978-3-030-13273-6_61 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:36347044/datastreams/COVER/content | |
dc.title | Method for living cell mechanical properties evaluation from force-indentation curves | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 13 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas Vilniaus universitetas | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.institution | Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.subject.researchfield | T 008 - Medžiagų inžinerija / Material engineering | |
dc.subject.researchfield | N 003 - Chemija / Chemistry | |
dc.subject.vgtuprioritizedfields | FM0202 - Ląstelių ir jų biologiškai aktyvių komponentų tyrimai / Investigations on cells and their biologically active components | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | AFM | |
dc.subject.en | mechanical properties | |
dc.subject.en | living cells | |
dc.subject.en | finite element model | |
dcterms.sourcetitle | Automation 2019. Progress in automation, robotics and measurement techniques, 27-29 March 2019, Warsaw, Poland : conference proceedings | |
dc.publisher.name | Springer | |
dc.publisher.city | Cham | |
dc.identifier.doi | 2-s2.0-85062260450 | |
dc.identifier.doi | 000583774200061 | |
dc.identifier.doi | 10.1007/978-3-030-13273-6_61 | |
dc.identifier.elaba | 36347044 | |