• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growth of microbial populations: mathematical modeling, laboratory exercises, and model-based data analysis

Thumbnail
Date
2006
Author
Juška, Alfonsas
Gedminienė, Genovaitė
Ivanec-Goranina, Rūta
Metadata
Show full item record
Abstract
This paper has arisen as a result of teaching Models in Biology to undergraduates of Bioengineering at the Gediminas Technical University of Vilnius. The aim is to teach the students to use a fresh approach to the problems they are familiar with, to come up with an articulate verbal model after a mental effort, to express it in rigorous mathematical terms, to solve (with the aid of computers) corresponding equations, and finally, to analyze and interpret experimental data in terms of their (mathematical) models. Investigation of microbial growth provides excellent possibilities to combine laboratory exercises, mathematical modeling, and model-based data analysis. Application of mathematics in this field proved to be very fruitful in getting deeper insight into the processes of microbial growth. The step-by-step modeling resulted in an extended model of the growth covering conventional lag, exponential, and stationary phases. In contrast to known models (differential equations that can be solved only numerically), the present model is expressed symbolically as a finite combination of elementary functions. The approach can be applied in other areas of modern biology, such as dynamics of various cellular processes, enzyme and receptor kinetics, and others.
Issue date (year)
2006
URI
https://etalpykla.vilniustech.lt/handle/123456789/142347
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister