Show simple item record

dc.contributor.authorGribniak, Viktor
dc.contributor.authorArnautov, Aleksandr K.
dc.contributor.authorRimkus, Arvydas
dc.date.accessioned2023-09-18T20:02:34Z
dc.date.available2023-09-18T20:02:34Z
dc.date.issued2019
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/146078
dc.description.abstractCompared with other structure types, stress-ribbon systems are extremely simple though requiring massive anchorage blocks because of very large tensile stresses induced in the ribbons. Such structural systems are efficient in pedestrian bridges. A major drawback of these systems is related to corrosion of the steel ribbons. Unidirectional carbon fibre reinforced polymer (CFRP) has a high potential for replacing steel in the ribbons because of lightweight, high strength, and excellent resistance to corrosion and fatigue. Application of CFRP materials, however, faced serious problems due to construction of the anchorage joints. Thus, the anchorage system is the object of this research. Adhesive bonding is a simplest technology for joining structural components made of CFRP composites with polymer matrix. In the adhesion joints, the loads are transferred due to the shear effect. However, a relatively low inter-laminar shear strength of CFRP decreases effectiveness of the gripping systems. Brittle failure of the bond is often consequence of stress concentration. An innovative anchorage joint is proposed to control shear stresses by varying a local curvature of the contact surface. A natural shape of Nautilus shell was chosen for the gripping system, whereas a 3D printing technique was applied for the prototyping purpose. Mechanical behaviour of the anchorage prototypes made of printed polymeric material was investigated experimentally.eng
dc.formatPDF
dc.format.extentp. 324-328
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.source.urihttps://doi.org/10.3846/mbmst.2019.138
dc.titleDevelopment of an anchorage prototype for CFRP stress-ribbon systems using 3D printing technique
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.accessRightsThis is an open-access article distributed under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dcterms.references8
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionUniversity of Latvia, Riga
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.contributor.departmentStatinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.vgtuprioritizedfieldsSD0101 - Pažangios statinių konstrukcijos / Smart building structures
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ltspecializationsC101 - Civilinės inžinerijos mokslo centras /
dc.subject.enhigh-performance materials
dc.subject.eninnovative bridge structures
dc.subject.ennon-metallic reinforcement
dcterms.sourcetitleThe 13th international conference “Modern building materials, structures and techniques”, 16–17 May, 2019, Vilnius, Lithuania
dc.publisher.nameVGTU Press
dc.publisher.cityVilnius
dc.identifier.doi000661870600047
dc.identifier.doi10.3846/mbmst.2019.138
dc.identifier.elaba47611944


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record