Deformations of FRP–concrete composite beam: experiment and numerical analysis

Date
2019Author
Gribniak, Viktor
Misiūnaitė, Ieva
Rimkus, Arvydas
Sokolov, Aleksandr
Šapalas, Antanas
Metadata
Show full item recordAbstract
Advanced materials have been created for structural application during the past decades. Engineers, however, faced severe problems due to the absence of a reliable technique for ensuring the required structural properties minimising the amount of material used. A lack of constitutive models for the analysis of the structural systems also exists. Residual stiffness of flexural concrete elements subjected to short-term load is the focus of this research. Tension-stiffening models were developed to represent the deformation response of the members reinforced with internal bars. This study examines the suitability of the tension-stiffening modelling approach for simulating the deformation behaviour of the composite specimens comprising glass fibre-reinforced polymer (GFRP) pultruded profile adhesively bonded to the tensile surface of the concrete beam. The study employs a nonlinear finite element approach and analytical model to simulate the deformation behaviour of the flexural elements.